

Materials booster

Develop, produce & sell

Silicon-based nanopowders that

disruptively improve the

properties of industrial materials

Continuous Innovation

Continuous Innovation

- A spin off of (2010)
- The technology is protected by several CEA patents, granted with exclusive rights to

which pursued innovating and filed several own patents :

Patent Title	Grant dates	Filing dates
"Method for producing multilayer submicron particles by	Jun 2015 - Fr	Jul 2012 - Fr
laser pyrolysis": coated particles (SiΩC)	Sep 2017 - Eur	Jul 2013 - PCT
	May 2018 - Cn	
	Jun 2018 - Jp	
"Submicron particles containing aluminium" : SiCΩAl	Oct 2018 - Eur	Nov 2013 - Fr
Submict on particles containing aidminium . Sicszai	Apr 2019 - USA	Nov. 2013 - PCT
"Method for producing a polymer based material"		Sep 2015 - Fr
nano-Si in batteries		Dec 2017 - Fr
"Valve and sealed container for submicron particles, and	Oct 2016 - Jp	Nov 2011 PCT
method for using same": Safe Containers and NanoAirlock valves	Jun 2017 - Eur/Fr	Nov 2012 - Fr
"Suspension system for sub-micron particles in a liquid, and method for using same": Safe Containers external pump		Feb 2013 - Fr
system		

Project #646221, Funded by the Horizon 2020 Framework Programme of the European Union

Continuous Innovation

nonomomers with & for global partners

Nanomakers exports 99% of its products outside of Europe.

Precise, reliable and secure technology

... guarantee of results

Laser pyrolysis process:

- The laser beam breaks the molecules of gaseous or vapor–phase precursors
- 2. Nanoparticles start building up abruptly
- 3. Particle size is controlled by a fast quenching which stops the particle growth

Experience and expertise:

- 33 years of know how
- 7 years at pilot scale
- +7 years industrial scale

2018

Various value propositions

under different forms

Laser pyrolysis

♦ Homogeneous:

Low particle size deviation.

♦ Pure:

High purity batches, low O2 & metallic content, (for Si/Si Ω C : **no SiC**)

♦ Reproducible:

Similar particle size distribution, chemical composition from one lot to another.

♦ Customizable:

Size, Surface, Coating

Our customers say (Eck Industries (USA), April 2014):

« First of all the **quality** of the powder received from Nanomakers was very good. The particle distribution was very **tight** and there was no apparent chemical **contamination**. From a practical aspect that means better incorporation into the melt and shorter processing times to get an acceptable particle distribution. I do not hesitate to say the **Nanomakers SiC** is the **best on the market**. »

Superior quality recognized ... by experts:

Kazuya Shimoda of **National Institute for Materials Science (NIMS)**, **Ibaraki** and Takaaki Koyanagi of **Kyoto University**, **Kyoto**

- IEST Institute of Energy Science & Technology Co. Ltd., Japan
- Marketech International Inc., USA

Mean.= 35 nm S.D. = 13 C.V. = 36% O 20 40 60 80 100120140160180200 Primary particle size (nm)

regarding:

- Particles size distribution, and
- C/Si ratio, and
- Impurities content and O2, and
- Industrial production capability

In:

« Surface properties and dispersion behaviors of **SiC nano**powders », in Colloids and Surfaces A: Physicochem. Eng. Aspects 463 (**Sept. 2014**) 93

An Industrial Company

An industrial company

Industrial production facility in Rambouillet ... since 2012

- **➤ 10-20 Ton/year**

Storage & distribution AIR LIQUIDE for 200+ ton/year

- Quality controls
- Procedures, Material Certificate
- Own control lab
- ISO 9001
- « no contact » Strategy
- For small and big quantities

Creating value for our customers

Creating value for our customers

Applications examples:

- mechanical & chemical **reinforcements**, **batteries density** etc.

Creating value for our customers

High Performance Aluminium

High Performance Aluminium

SiC nano powders ... for high performances aluminium alloys

For lighter transportation media

Aeronautics

Spatial

Automotive

Defence

body

Chassis

Pod of Rafale

Additive manufacturing

High Performance Aluminium

SiC nano MMC in aluminium technological choices:

Preferred aluminium grade:

A356 already including 7% silicon

Results (1% wt. loading):

- Reinforcement goes into the grain boundary
- **Disruptive** improvement in **mechanical performance**
- Significant improvement in toughness
- Not compromising the elongation @ break
- Alternative to scandium?

Dispersion:

- **Dispersion** is the **key** to obtain improved results : the so-called "**nano-effect**"
- Ultrasonic probe dispersion has proved to be a solution in lab testing

High Performance Aluminium

Reinforcement using 1% wt. of nano SiC

- **Strong** performance improvement for mechanical properties
 - Allow part re-design
- **Elongation at break (6-7%)**
 - An improved alternative to existing MMC
- Comparable properties to aluminium 6082 T6
 - Direct casting in replacement of forging.

After T6 thermal treatment (University of Wisconsin - USA)

NM SiC as reinforcing agent for aluminum

Possible trials for Foundry:

- Direct n-SiC dispersion inside melting Aluminum
- Direct n-SiC dispersion in between solid Al slices/ingots, then melting
- n-SiC/Al pre-composite manufacturing (powder, shavings, cylinders) then dispersed inside melting Aluminum
- n-SiC/Al pre-composite manufacturing (powder, shavings, cylinders) then mixed 4. with solid Aluminum, before melting the whole composite

General comments and recommendations:

- Aluminum matrix tested = AS7G0,3 (or other Al alloys containing around 0 and 10% of silicon)
- SiC % wt. reinforcement = 1%
- Slow and sequenced introduction of nanoparticles into the vortex generated by mechanical stirring
- Regularly cleaning the surface in order to avoid the formation of an oxide layer that could limit the introduction of nanoparticles in the melt
- Use of sonication to de-agglomerate nanoparticles
- Inert gas degassing to avoid hydrogen introduction and so porosity in the final alloy

NM SiC as reinforcing agent for aluminum

Possible trials for Additive manufacturing:

- 1. Direct n-SiC blending with Aluminum in a solid-state thermo-mechanical process producing high-deposition rate paste without melting
- 2. Direct n-SiC blending with Al powder then alloyed/solidified through a selective laser melting process (SLM)
- 3. n-SiC/Al pre-composite powder manufacturing then blended with Al powder, finally alloyed/solidified through a SLM process

General comments:

- Aluminum matrix = Al alloys containing around 0 and 10% of silicon, or others (A7075 for example)
- SiC % wt. reinforcement = **1-3%**

Composite basic tests:

Metallography, MEB, Density, Hardness, Yield strength, Ultimate tensile strength, Elongation at break

HIPERCO Project

Nano-SiC **dispersion** in aluminium alloys : 3 ways

- **Melting** alloy : PoC → scaling up
- **Powder** metallurgy
- **Electrolysis**

Choice = Powder Metallurgy

project: High PERformance COmposite

Technical objectives:

- Homogeneity of nano-SiC dispersion in the host-matrix
- **Powders** characteristics **conservation** along the **process steps**
- **Ceramics-metal interface** quality
- **Improvement** of alloy **performances** (→ **lighthening**)
- Additive Manufacturing efficiency improvement

HIPERCO Project

Project outcomes:

- ✓ Scale-up SiC/Al powder production for additive manufacturing
- ✓ Manufacture parts for aeronautic industry
- Recycle Al chips into powder for AM

Project Partners:

Industry:

RTO and academics:

To start: January 2018

And Magnesium ...

... The nano effect

>> improving magnesium performance ...

Z. Wang et al., Trans. Nonferrous Met. Soc. China 20 (2010), 1029						
Used Technology : Casting, ultrasonic assisted dispersion						
AZ91D alloy composition : 8.94% Al, 0.70% Zn, 0.22% Mn, 0.02% Si, balance Mg	SiC content (wt.%)	YS (MPa)	UTS (MPa)	E@B %		
AZ91D Alloy	0	104	174	3.6		
AZ91D Alloy+ SiC 50 nm nanopowders	0.5	124+ 19%	216 + 24%	6.6 + 83%		

K.B. Nie et al., Materials and Design 36 (2012) 199						
Used Technology: Semisolid stirring assisted ultrasonic vibration + extrusion						
AZ91D alloy composition: 9.07% Al, 0.68% Zn, 0.21% Mn, balance Mg.	SiC content (wt.%)	YS (MPa)	UTS (MPa)	E@B %		
AZ91D Alloy	0	90	186	6		
AZ91D Alloy+ SiC 60 nm nanopowders	1	198 + 120%	₆ 254 + 369	% ¹² 100 %		

When infinitely small makes a difference:

the « Nano effect »