

Materials booster

Develops, produces & sells

Silicon-based nanopowders that

disruptively improve the

properties of industrial materials

Continuous Innovation

Continuous Innovation

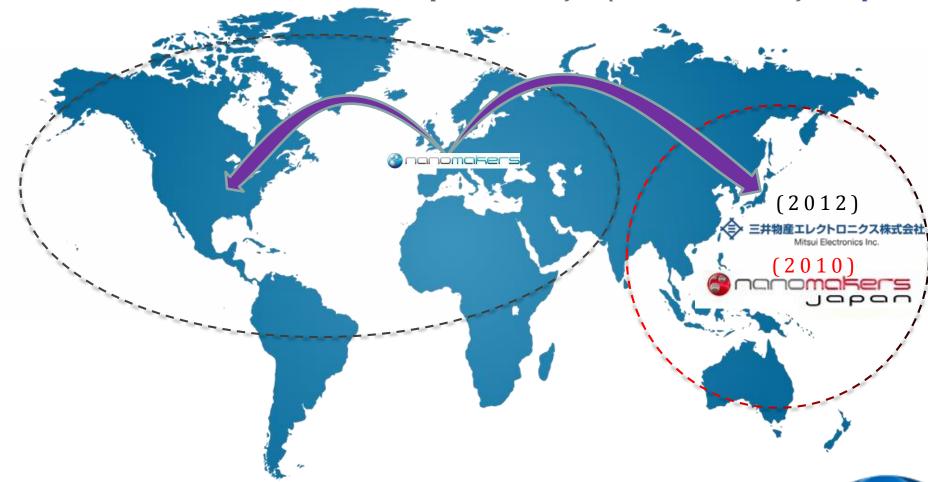
- A spin off of (2010)
- The technology is protected by several CEA patents, granted with exclusive rights to

which pursued innovating and filed several own patents :

	*	
Patent Title	Grant dates	Filing dates
"Method for producing multilayer submicron particles by	Jun 2015 - Fr	Jul 2012 - Fr
laser pyrolysis" : coated particles (SiΩC)	Sep 2017 - Eur	Jul 2013 - PCT
	May 2018 - Cn	
	Jun 2018 - Jp	
"Submicron particles containing aluminium" : SiCΩAl	Oct 2018 - Eur	Nov 2013 - Fr
	Apr 2019 - USA	Nov. 2014 - PCT
"Method for producing a polymer based material"		Sep 2015 - Fr
nano-Si in batteries		Dec 2017 - Fr
"Valve and sealed container for submicron particles, and	Oct 2016 - Jp	Nov 2011 PCT
method for using same": Safe Containers and NanoAirlock	Jun 2017 - Eur/Fr	Nov 2012 - Fr
valves		
"Suspension system for sub-micron particles in a liquid, and		Feb 2013 - Fr
method for using same": Safe Containers external pump		
system		

Project #646221, Funded by the Horizon 2020 Framework Programme of the European Union

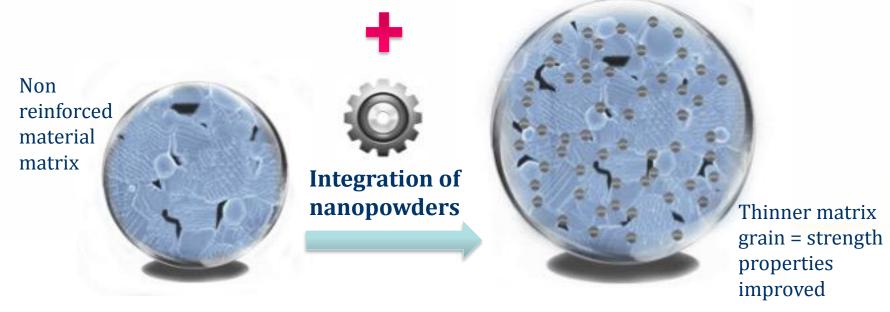
RawMaterials
Connecting matters



Continuous Innovation

nonomomers with & for global partners

Nanomakers exports 99% of its products outside of Europe.

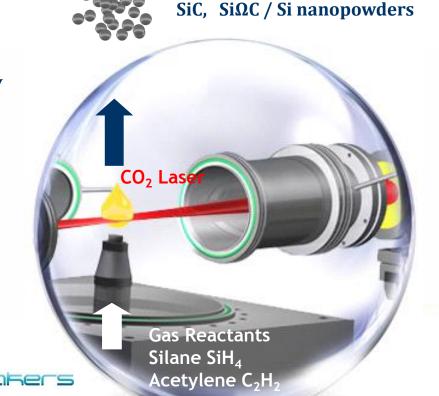


The « nano effect » >> improving material's performance

The nano effect: material re-structured at the atom scale

Our value creation lies into dramatic improvement of material performance enabling our customers to offer outperforming products: lighter, stronger, more durable

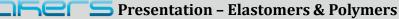
Precise, reliable and secure technology


... guarantee of results

Laser pyrolysis process:

- The laser beam breaks the molecules of gaseous or vapor-phase precursors
- 2. Nanoparticles start building up abruptly
- 3. Particle size is controlled by a fast quenching which stops the particle growth

Experience and expertise:


- 33 years of know how
- 7 years at pilot scale 222
- +7 years industrial scale

Laser pyrolysis

♦ Homogeneous

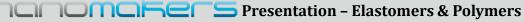
Low particle size deviation.

♦ Pure

High purity batches, low O_2 & metallic content

♦ Reproducible

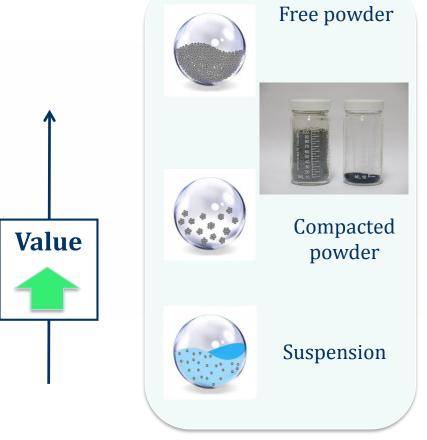
Similar particle size distribution, chemical composition from one lot to another.


♦ Customizable

Size, Surface, Coating

Our customers say (Eck Industries, April 2014):

« First of all the quality of the powder received from Nanomakers was very good. The particle distribution was very **tight** and there was **no apparent chemical contamination**. From a practical aspect that means better incorporation into the melt and shorter processing times to get an acceptable particle distribution. I do not hesitate to say the Nanomakers SiC is the best on the market. »

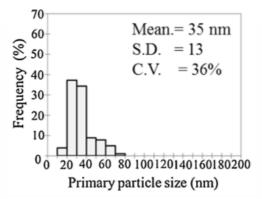


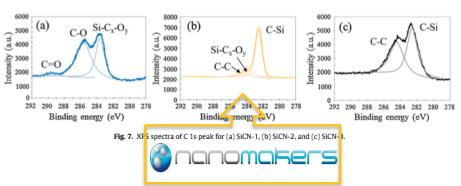
Various value propositions

under different forms

Superior quality recognized ... by experts

Kazuya Shimoda of National Institute for Materials Science (NIMS), Ibaraki and Takaaki Koyanagi of Kyoto University, Kyoto




- IEST Institute of Energy Science & Technology Co. Ltd., Japan
- Marketech International Inc., USA

regarding:

- Particle size distribution,
- C/Si ratio,
- Impurities and O₂ content,
- Industrial production capability

In:

« Surface properties and dispersion behaviors of **SiC nano**powders », in Colloids and Surfaces A: Physicochem. Eng. Aspects 463 (**Sept. 2014**) 93

An Industrial Company

An industrial company

Industrial production facility in Rambouillet

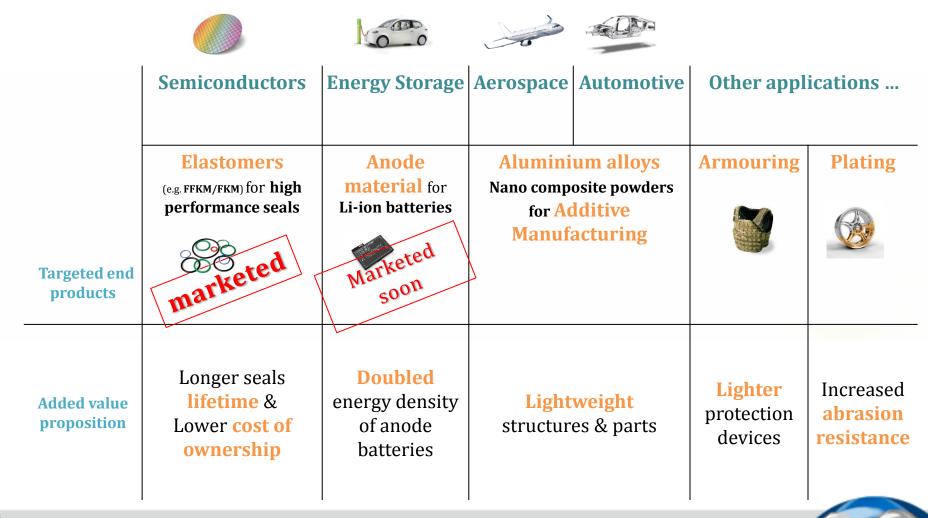
... since 2012

- > 10-20 Ton/year

Storage & distribution AIR LIQUIDE for 200+ ton/year

- Quality controls
- Procedures, Material Certificate
- Internal laboratory of controls
- ISO 9001

Creating value for our customers



Creating value for our customers

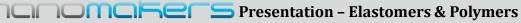
Applications examples:

mechanical & chemical reinforcements, batteries density etc.

Creating value for our customers

FFKM seals for semiconductor applications

FFKM Seals


Semiconductors applications ... High cleanliness seals

Market Drivers

- Semiconductors: industry needs for higher performance and improved cleanliness (plasma etching and CVD).
- Increasing production of below 28 nm transistors creates a demand for improved cleanliness using well distributed fillers.
- Usage of aggressive plasmas create a need for improved chemical resistance of elastomeric seals and reduced contamination.
- Semiconductors: Plasma etching and CVD applications

Seals used in semiconductor applications have to face four important issues:

- Plasma resistance
- Particle contamination
- Metallic contamination 3.
- 4. Outgassing

FFKM Seals

Semiconductors applications ... High cleanliness seals

Market Drivers

1. Plasma resistance

- Fluorine plasma
- Oxygen plasma
- Plasma resistance of elastomers can vary widely depending upon the plasma chemistry

Particle contamination 2.

- Carbon black: metal contamination, poor particle size homogeneity, high loading needed for reinforcement.
- Silica: metal oxides contamination, batch to batch variation, high loading needed for reinforcement.
- Organic Fillers: poor mechanical and plasma resistance.

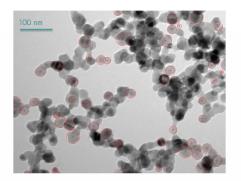
Metallic contamination 3.

- Iron, Chromium, Nickel, Copper, Titanium, Magnesium, are a concern in plasma processes.
- Carbon black and silica fillers are not clean enough to avoid metallic impurities.

Outgassing

Low level of contamination ... high purity

nanamakers typical grade for semicon industry is:



NM SiC99 @ 35nm

Purity above 99%

- SSA: 50 60 g/m²
- APS: 32 38 nm
- Density: 3.1 3.2 g/cm³
- Metal impurity: on demand
- Oxygen < 1%
- Moisture content < 1%

2018/Q4

FFKM Seals

Low level of contamination ... Few metallic impurities

NM SiC 99 @ 35nm

Determination of trace elements by ICP-MS analysis method Some analysis results form our last batches

Component	Units	Detection Limit	Result Value		
L0115-SAR-P-R Priority Quantitative Analysis by Laser Ablation ICP-MS					
Chromium (Cr	ppm (µg/g)	0.05	1.7		
ron (Fe	ppm (µg/g)	0.05	5.3		
Nickel (Ni	ppm (µg/g)	0.05	0.52		

Oxygen 0,4%

Component	Units	Detection Limit	Result Value		
L0115-SAR-P-R Priority Quantitative Analysis by Laser Ablation ICP-MS					
	ppm (µg/g)	0.05	0.94		
Iron (Fe)	ppm (µg/g)	0.05	4.1		
Nickel (Ni)	ppm (µg/g)	0.05	0.35		

Oxygen 0,4%

FFKM Seals

PerFluoroelastomers are often compounded with nearly "inactive" fillers (MT N-990, Austin Black)

Replacing CB and Silica with nano SiC allows:

- SiC has high thermal conductivity => improve life time of the seal
- No defects during semiconductor manufacturing (nano size SiC as filler avoids release and deposit from FFKM compound on silicon wafer)
- **Inhibiting generation of foreign matters** (particles) during plasma treatments thanks to purity of nano SiC.
- Optimum nano effect reinforcement, **low loading** resulting in **shorter processing time**, **weight reduction**.
- Opportunity of surface chemistry (limited surface oxidation allows coupling agent opportunity): **improve dispersion** into the FFKM.

Nanomakers SiC Nano @35nm Value **Proposition for FFKM seals**

- High plasma resistance:
 - Reduce usage of carbon black and improve cleanliness of compound when used in plasma process >>> Improve yield factor in semicon operation
 - Increase temperature and chemical resistance >>> Reduce down time on machinery for seal replacement / Extend mean time between seal replacement >>> Improve productivity and Lower cost of ownership

Nanomakers SiC Nano @35nm Value **Proposition for FFKM seals**

High mechanical performances:

SiC content (phr)	Hardness (Shore A)	Compression set - DRC, 70h (%)	Tensile stress at break (MPa)	Elongation at break (%)	Tensile stress at 100% elongation (MPa)	Tensile stress at 300% elongation (MPa)
4	50-55	15-20 (200°C)	10-12	320-350	1,5-2	9-12
15	70-75	35-50 (300°C)	-	-	-	-

Good mechanical properties of nano-SiC reinforced FFKM even at low filler content

Creating value for our customers

Silicone thermal behaviour enhancement: TIM

Silicone thermal behavior enhancement: TIM

Silicone rubbers

Silicone is an elastomer made of silicon, oxygen & hydrogen. It resists to temperature change, UV radiation and certain solvents and chemicals.

Silicon carbide (SiC) has high thermal performance

- Excellent property in term of heat dissipation (170 W/m.K for the bulk)
- Good electrical insulating material, mechanical performances in term of durability & lightness

Main benefits of using nano SiC of Nanomakers

- Nano size: good to avoid the holes at the interface of the TIM and substrate
- Low thermal expansion (4,7 ppm/K) which can compensate the one of the silicone rubber

When infinitely small makes a difference:

the « Nano effect »