

Materials booster

Develops, produces & sells silicon-based nanopowders that disruptively improve the properties of industrial materials

Continuous Innovation

Continuous Innovation

- A spin off of (2010)
- The technology is protected by several CEA patents,

which pursued innovating and filed several own patents:

1	•		
Patent Title	Grant dates	Filing dates	
"Method for producing multilayer submicron particles by	Jun 2015 - Fr	Jul 2012 - Fr	
laser pyrolysis" : coated particles ($Si\Omega C$)	Sep 2017 - Eur	Jul 2013 - PCT	
	May 2018 - Cn		
	Jun 2018 - Jp		
"Submicron particles containing aluminium" : SiC Ω Al	Oct 2018 - Eur	Nov 2013 - Fr	
	Apr 2019 - USA	Nov. 2014 - PCT	
"Method for producing a polymer based material"		Sep 2015 - Fr	
nano-Si in batteries		Dec 2017 - Fr	
"Valve and sealed container for submicron particles, and	Oct 2016 - Jp	Nov 2011 PCT	
method for using same": Safe Containers and NanoAirlock	Jun 2017 - Eur/Fr	Nov 2012 - Fr	
valves			
"Suspension system for sub-micron particles in a liquid, and		Feb 2013 - Fr	
method for using same": Safe Containers external pump			
system			

Framework Programme of the European Union

Continuous Innovation

nanomakers with & for global partners

For LiB, Nanomakers collaborates with 80% of the world Li-ion battery market and particularly with all the technological and industrial leaders. Nanomakers exports also 99% of its products outside of Europe.

Precise, reliable and secure technology

... guarantee of results

Laser pyrolysis process:

- The laser beam breaks the molecules of gaseous or vapor-phase precursors
- 2. **crystals** start **building up** abruptly
- 3. Particle **size** is **controlled** by a fast quenching which stops the particle growth

Experience and expertise:

- 33 years of know how
- +7 years at pilot scale
- +7 years industrial scale

Homogeneous:

Strict crystal growth & size control Low particle **size** deviation.

Pure:

High **purity** batches, **low O**₂ & metallic content

Reproducible:

Similar particle size distribution, chemical composition

from **one lot to another**.

Unique industrial practice

Customizable:

Size, Surface, Coating

Various value propositions

under different forms

Superior quality recognized ...

① By **experts** :

Kazuya Shimoda of **National Institute for Materials Science (NIMS)**, Ibaraki/**Tokyo** and Takaaki Koyanagi of **Kyoto University**, **Kyoto**

regarding:

- Particles size distribution,
- Chemical purity C/Si ratio,
- Impurities content and O2,
- Industrial production capability

In: « Surface properties and dispersion behaviors of **SiC nano**powders », Colloids and Surfaces A: Physicochem. Eng. Aspects 463 (**Sept. 2014**) 93

2 And by our *customers*: Eck Industries (USA):

« First of all the **quality** of the powder received from Nanomakers was very good. The particle distribution was very **tight** and there was no apparent chemical **contamination**. From a practical aspect that means better incorporation into the melt and shorter processing times to get an acceptable particle distribution. I do not hesitate to say the **Nanomakers SiC** is the **best on the market**. »

An Industrial Company

An industrial company

Industrial production facility in Rambouillet (50 km **Paris**)

... since 2012

- **40 t/year** capacity
- Storage & distribution AIR LIQUIDE for 200+ t/year

- Procedures, Certificate of Analysis
- Own quality control lab
- ISO 9001

- « no contact » Strategy
- for small and larger quantities
- "safe by design"

Creating value for our customers

Creating value for our customers

Applications examples:

mechanical & chemical reinforcements, batteries density etc.

Creating value for our customers

Si anodes for Lithium-ion Battery

The industry silicon-based anode consensus

OEMs Intention: **BMW** showed at Battery Japan 2018 **30-50% silicon** should be suitable for final target.

Market study for Li-ion Battery

Perspectives nano-Si @ 2030 (tpa)

Forecast		2020			2025			2030	
Target markets	Anode material (ton)	Composite Si-C (ton)	% Si-C in overall power	Anode material (ton)	Composite Si-C (ton)	% Si-C in overall power	Anode material (ton)	Composite Si-C (ton)	% Si-C in overall power
EV	62 468	1 750	7%	93 701	7 000	16,6%	109 318	24 500	37,4%
3C	40 000	2 000	5%	55 000	5 500	10%	64 000	21 120	33%
Other niche markets	8 000	1200	15%	12 000	3 000	25%	14 000	8 400	60%
	110 500	4 950	CAGR :	- 5 5 % (AM) / 27%	% (Si-C)	187 318	54 100	

Tonnage calculated based on graphite with a capacity of 300 mAh/g and Si-C composite with a capacity of 800 mAh/g

The industry silicon-based anode consensus

- Strong demand for innovation with major R&D efforts aiming at:
 - i. improving density (autonomy)
 - ii. improving lifetime
- Technical improvements have mainly taken place on the cathode material so far
- Industry research efforts currently cast on improving anode capacity using silicon instead of graphite, multiplying energy storage but generating two major challenges:

Cracking

Oxidation

Solving the cracking and oxidation issues are **key enablers** for the **commercialization** of **new generation** Li-ion **batteries** : NM $Si\Omega C$

NM SiΩC for high density batteries

NM $Si\Omega C$ for high density batteries

NM Si\OmegaC99 (intrinsic) **Product Advantages**:

- Our novel nanocomposite **Si\OmegaC** overcomes the **limitations** of
 - pure or non nano Si (cracking and oxidation)
- Silicon-based particle
 - Homogeneous particle size distribution
 - Small size (40 nm)
 - Low oxygen content (< 2% wt.), no SiC, High purity 3.
- **Carbon** shell
 - **protects Si** from direct **electrolyte** exposure,
 - favors the creation of a stable SEI layer, and
 - improves the affinity of Si with most graphites and binders 3. (CMC, PVDF...).
- **Chain like** structure enables **high conductivity** of $Si\Omega C$

NM SiΩC for high density batteries

NM Si\OmegaC99 Product Advantages (used in composite):

- Anode performance is improved when using a structured Graphite/n-SiΩC composite, which offers significant improvements in both the gravimetric and the volumetric energy density over commercially used graphite.
- Such composites show a high initial coulombic efficiency and an excellent cycling performance.

NM SiΩC for high density batteries

NM $Si\Omega C99$ Product applications:

2 approaches for Lithium-ion Battery application:

- **1. Horizon 2020, Liquid type LiB**: Adding NM SiΩC99 to anode materials (SiOx, graphite, etc.) to improve the current anode energy density
 - Mixing nano $Si\Omega C$ with anode materials,
 - Introducing into existing anode manufacturing process,
 - Improving LiB performances by increasing anode specific capacity
- **2. Horizon 2030/40, All Solid State** : Using NM SiΩC99 as main anode material combining with solid electrolyte and solid cathode to make All Solid-State Battery.
 - Multiplying specific capacity of anode by 2-3 (compared with liquid type LiB)
 - Controlled silicon volume expansion: simpler battery design compared to Li metal
 - Providing a safer system for LiB: no dendrite formation, no inflammation if puncturated
 - No "dead Li"
 - Si anode compatible with LiS battery

When small makes a difference:
the « Nano effect »